Create an Account CourseStreet Log in  Connect with Facebook
Home Blog
 

NRSC 2100 Blog

A GROUP WEBLOG FOR NRSC 2100 SUMMER NRSC 2100

Showing entries tagged moral obligation.  Show all entries

December 5, 2011

Why Keep A Promise?


It is interesting to see the importance humans place on a promise. A promise is not visible or tangible yet it still seems to have a strong, compulsory quality to it. Why is that? The truth of the matter is humans have the exceptional capacity to establish social norms and create understood cooperation among each other that is not seen elsewhere in the animal kingdom. Before society's infrastructure of rules and laws existed, promises were still made as a way to ensure trust, teamwork and partnership. Furthermore and perhaps the most intriguing aspect of a promise is that it is a verbal, nonbinding agreement. Yet despite the lack of concrete liability we still make promises every day.

Some research looking into the systems of the brain involved in nonbinding agreements has been done but there are still more questions than answers regarding of this topic. Using promises as a premise for research opens a unique door because promises can either be kept or broken. They can be made for many reasons but there are two justifications for keeping a promise. The first is to ensure future trust and cooperation and is referred to as an instrumental reason. The second rational is because it is the right thing to do and is called the intrinsic reason. The study in this paper focuses on the latter of these two explanations.

Each trial of the experiment had two subjects, a trustee and an investor. The trustee's brain activity was measured. First the trustee promises the investor to always, mostly, sometimes, or never keep their promise. In this study to be trustworthy means sharing the money made equally. The investor could choose to invest or not and then the trustee could choose to keep or break their promise to share the money. The trustee could choose both the strength of their promise and whether or not to keep their promise. These freedoms of choice led to two main groups of trustee subjects: both groups almost unanimously promised to "always" keep their promise but when it came to keeping the promise the subjects split into either the group who honored their promise or who was dishonest.

This study was the first to create a design looking at three different processes that play a role in promises. The first stage is the promise stage where the promise is made, then there is what is called the anticipation stage while they wait for the commitment of the investor, and finally the decision stage where the promise is either kept or broken. Researchers could differentiate subjects who will keep their promise and who will break it by brain activity during the promise stage, when the deceitful act is already planned.

This study found that all stages of the paradigm revealed different, highly specific activation patterns in the brain. The promise stage is where the dishonest act may be already planned but not yet implemented and researchers hypothesize if the subject already plans to break a promise, this misleading gesture will induce an emotional conflict. This emotional clash shows activity in parts of brain involved in conflict and negative emotional process such as the anterior cingulated cortex or amygdala. The anticipation stage showed parallels in brain activity to personality traits such as depression and neuroticism, both of which are associated with negative expectations of the future. When the subject had to decide to keep or break the promise, breaking the promise showed similar brain activity to the emotional process of telling a lie and the guilt that that involves. This study showed plausible evidence tying nonbinding agreements to emotional and logical processes of the brain. This evidence is critical in explaining why humans value and venerate the simple idea of a promise.



Baumgartner, Thomas, Urs Fischbacher, Anja Feierabend, Kai Lutz, and Ernsty Fehr. "Broken Promises." Neuron 64.5 (2009): 756+. Science Direct. Elsevier Inc, 10 Dec. 2009. Web. 5 Dec. 2011. .
Posted by      Bethany B. at 10:48 AM MST
  Sarah Bennet  says:
Amazing blog and very emotional. A promise is not a concrete thing but it has feelings and quality to bond two people with trust. Everyone should need to read this and learn the important message from this. dba writing help
Posted on Wed, 3 Jul 2019 3:34 AM MDT by Sarah B.

December 3, 2011

Drinking on the Job: How Flies get Drunk


Thursday, Friday, and Saturday night... I know what you're thinking. No class till Monday, no work, what a great night to get ahead on studying and up to date with all the problems in the world. However, I must point out this plan is not the first thing that pops into everyone else's mind (at least those outside the world of the poor soul who is reading this neuroscience blog). Much of western society is based around the beverage/drug/poison we've come to know as alcohol. It has come to the attention of neuroscientist that our race is not the only one that takes pleasure in consuming firewater. It turns out some researchers were playing with the old 160 proof lab ethanol when they came upon an astounding discovery.

It all started when one turned to the other and croaked, "I'm drunkk frog haha." The other slurred back, "weelll thenn, gooood thing I'm not a fly huh?" That's when it hit them. "Eureka!" piped the first. "Oh my god!" yelled the second. "Let's" get the flies wasted!" the second hollered back. They quickly spun off their lab stools and bustled for the fly room stumbling and tripping the whole way. When they got to the room they immediately grabbed the first beaker of flies, ripped out the cork and filled it full of the powerful booze, instantly killing all the flies inside. Once they realized the horrendous massacre they had just committed in front of all the hundreds of thousands of other flies in the room their drunken smiles slipped off. The beaker was placed on the counter as the two somber scientists held each other with silent tears streaming down their cheeks. Then one started laughing; irritated, the other muttered, "How can you laugh at a time like this? We just killed them, in front of their families... drowned them, squashed them like flies... "Look, that one's drunk," the other researcher pointed at a fly that was clearly not adhering to the standard sober drosophila flight pattern. They watched the fly for nearly two hours, they sat on the fly room floor entranced by the fly's drunken escapades. Then as its flight pattern began to return to normal it headed back to the beaker full of booze, and began gulping down, without a thought to the dead brothers, sisters, cousins and children floating on top. Gleeful laughter burst from the researchers as they cheersed and began taking large quaffs of their own. Quickly forgetting their bloody hands they then began pulling the corks of the other beakers, filling up petri dishes with ethanol, and pipetting small volumes of ethanol in for the larvae--so no one was left out. They spent the whole night at the lab with their new found drinking buddies and had a gay old time. A few days later after their handover was gone they decided to write a paper.

It was determined drosophila liked the inebriation caused by excessive consumption of ethanol. Like us, the flies were experiencing their pleasure through the activation of the dopamine pathway. Activating this pathway induced LTP in the flies. Looking further into the flies' neural circuitry the researchers determined the rewarding memories the flies experienced (or the lack of memory if they got too plastered from not getting enough sugar before) were localized, accessed and retrieved with a distinct set of neurons in the mushroom body. With the vast number of flies they got drunk the researchers' found some flies didn't come back to drink. The experimenters were obviously offended and quickly squashed them. However, they didn't stop there; they proceeded to analyze the DNA so they could breed out the bad gene and make sure no other flies would be lame. They found mutations in scabrous were responsible. They commonly call it the party pooper gene around the lab. "This gene encodes a fibrinogen-related peptide that regulates Notch signaling, disrupted the formation of memories for ethanol reward" (Kaun, 2011). The experimenters have been thought to have had a little bit too much fun drinking with the flies, but they have felt the public pressure. Now they're looking into how this research will help their own species and we will undoubtedly be hearing more from them soon.

Hope you enjoyed the read, sincerely Charlie Stewart

"A Drosophila model for alcohol reward"
Karla R Kaun, Reza Azanchi, Zaw Maung, Jay Hirsh & Ulrike Heberlein
Nature Neuroscience April 17th 2011
Posted by      Charlie S. at 8:15 PM MST
  peter pen  says:
Such the great post i really to visit the best way for installing free windows dvd player software and must be thanks for the really update thanks.
Posted on Sat, 27 Apr 2019 4:14 AM MDT by peter p.
  Julian Julian  says:
We all happy to get neuro science classes to know how to get drunk services. The following resources you can easily gather for the review of papersowl.com writing service media entries. Then after we will get the most useful neuro science responses.
Posted on Sat, 14 Sep 2019 9:20 AM MDT by Julian J.
  tonny ken  says:
Your feedback helps me a lot, A very meaningful event, I hope everything will go well run 3
Posted on Tue, 22 Oct 2019 10:55 PM MDT by tonny k.

October 20, 2011

Can we trust Neuroscientists?


October 19, 2011

Typically, neuroscientists, or among all scientists, fail to provide full disclosure of the project to a participant in order to obtain valid knowledge on the phenomena being investigated. Although this methodology is widely used by many scientists, it however proves to be an ethically controversial topic. The idea of deception in human experimentation becomes unethical as the informed consent required by the individual is not completely transparent of the research, thus lacks a degree of respect for the persons utilized in the experiment. Hence, how can the vast majority of psychology and neuroscience projects be approved by ethic committees if deception is a common methodological theme? Are participants rights triumphed by the knowledge gained by the experimentation? To what extent are unethical methods permitted by ethic committees and what makes one idea allowed and another not? These are questions that we should be asking ourselves, knowing that science should not be independent of ethical and moral values.

It comes to my attention that a capacious amount of published articles using deception as a method to obtain valid knowledge by the participant is not specifically stated so in the journal article. Without blatantly stating that this form of research utilized deception, a person that is unaware of ethical issues within research may not realize that some participants were not given proper information.

Understandably, deception in research is a methodology that is not going to leave science any time soon. Therefore, it is necessary to make it prevalent to the public that this occurs and for readers of the research articles to be fully aware of the use of deception. I believe that it is pertinent that if a researcher decides to integrate deception into the procedure, it should be clearly stated within the Materials and Methods section of the journal article. Overall, I believe that the nature of the research should be explained to the participates after the experimentation, such that it will soften the overarching ethical dilemma. This may ultimately limit the participant pool, but it does give a degree of respect from the researcher to the participants that is truly deserved.

Personally, I believe that it is our right and our duty, as readers and future neuroscientists, to take this matter seriously. We should not allow researchers to infringe upon participants rights to be tested when there is a lacking of transparency of the nature of the research. We should encourage our colleagues and higher authorities to demand that experimental deception included in the research should be explicitly stated within published articles and individuals be debriefed of the entirety of the project. Adding these boundaries to published articles will not only provide a more ethically sound publication, but will promote respect for science among readers that are not familiar with the field when full disclosure of the experimentation is available to the public eye.

Original article: http://www.jneurosci.org/content/28/19/4841.full.pdf
Posted by      Sarah H. at 12:16 AM MDT
  Christina Uhlir  says:
Sarah,

Objectively speaking, would you or wouldn't you trust a neuroscientist?
Posted on Sun, 23 Oct 2011 2:23 PM MDT by Christina U.
  Sarah Ha  says:
Personally, I wouldn't want to be a participant in an experiment if I'm not given full disclosure of the purpose of the experiment. Plus, it makes me more skeptical when I read journal articles of overall results if the published article is fully disclosing their methodology. How can I repeat their experiment if I don't know exactly what they did?
Posted on Tue, 29 Nov 2011 3:56 PM MST by Sarah H.




 Copyright © 2007-2016 Don Cooper, Ph.D.. All rights reserved.
  Feed — Subscribe: RSS