Create an Account CourseStreet Log in  Connect with Facebook
Home Blog
 

NRSC 2100 Blog

A GROUP WEBLOG FOR NRSC 2100 SUMMER NRSC 2100

Showing entries tagged human research.  Show all entries

December 5, 2011

What will they think of next?


Who knew? In the 1960's up until the 1970's ablative stereotactic surgery was used to treat neurologic disorders and neuropsychiatric illness. This treatment was largely abandoned after the 70's due to the development of highly effective drugs to treat these problems, for example, "Levodopa" to combat Parkinson's disorder. Today there seems to be a virtual renaissance of similar techniques used to help those suffering.

The technique being employed uses high-frequency electrical deep brain stimulation (DBS) on specific targets to negate some disorders. Compared to the traditional ablative stereotactic surgery, which consists of lesions and very invasive brain surgery (irreversible), DBS is much less invasive in some respects. By applying high-frequency electrical stimulation to specific brain structures a similar (but different) effect of a lesion is essentially observed. Ever since this technique's rise in popularity (starting in the 1990's) people have the option of a "less permanent". These electrical pulses are delivered by electrodes chronically implanted into a persons brain at specific regions. The exact mechanism of action for DBS still isn't fully understood and clear, but the affects and benefits to patients are both lasting and clear.

Some of the diseases mentioned in the article include Parkinson's, Tourettes syndrome, obsessive compulsive disorder and depression. Patients receiving DBS to treat Tourettes syndrome had a >70% decrease of vocal or motor tics with disappearance of sensory urges. 35-70% of patients receiving DBS to treat OCD were benefitted by a significant reduction in obsessive and compulsive thoughts.

In my opinion, and it seems to be the case with most neurosurgical operations, DBS is the latest and greatest treatment available. Anytime patients can avoid a permanent/irreversible effect such as a lesion the better. My reasoning behind is vast. For example if a patient is suffering from body dissociation disorder and doesn't identify with their right arm and right leg and wants to have these two limbs removed. This persons could amputate these limbs without fully understanding the long term consequences involved or even without any benefit mentally. Or perhaps, the doctor could try a different technique, such as lesioning a brain region located using fMRI thought to be triggering body dissociation disorder. There is a chance the lesion might not properly treat the disorder or not treat it at all. Also the lesion may impair the individual in a more negative way in the long run, and since lesions are practically irreversible, the person is worse off. If DBS was used (tmi could be used as a pre-emptive mapping tool) the patient could be treated for their disorder in a non permanent way and avoid negative, unforeseen, long term issues.

I'm not entirely sure how invasive DBS is but the article made it out to be much less invasive as previous surgeries. Which to me makes sense since over time medical practices should become more and more efficient. Something haunts me about the fact little is truly known and fully understood about DBS and TMI. Little red flags go up in my head every time that fact is mentioned. Whether or not it is effective and beneficial I would prefer to know exactly why it is effective and beneficial before doctors implanted electrodes in my brain to deliver pulses of high-frequency electricity. This honestly sounds like something out of a science fiction story but the real freaky part is it seems to actually work. The big question is: Would you ever have DBS performed on yourself? My answer is yes.

http://www.sciencedirect.com/science/article/pii/S089662730600729X
Posted by      Dylan R. at 5:42 PM MST
  Matthew Jennings  says:
Really happy to find such an informative blog. Personally I loved this type of blog. Nice blog on Meta object protocol . Looking forward for buy essay online australia more blogs.
Posted on Thu, 11 Jul 2019 7:08 AM MDT by Matthew J.
  ellie jame  says:
Posted on Thu, 25 Jul 2019 4:01 AM MDT by ellie j.
  Jhon Ron  says:
Very informative post. The cure Neurological disorders and neuropsychiatric illness https://icasinoreviews.info/win-instant-cash-online-nz/ is a great danger to the patient and his family. The treatment enlisted are really helpful in curing the affected person to revitalize their life.
Posted on Wed, 28 Aug 2019 2:13 PM MDT by Jhon R.

Optimism: Is too much a bad thing?


We've all been told at one point or another in our lives to look on the brighter side of a given situation. Most of the time we do because the brighter side brings some sort of happiness and therefore when look on the brighter side of a situation, it helps us by easing the negative feeling we have towards that situation. And so by looking on the brighter side, we keep ourselves positive and our stress levels down a bit. But how can you still be optimistic even though there is information that goes against what you believe? As I go through the article, How unrealistic optimism is maintained in the face of reality, I will hopefully answer this question.
In this article, Sharot et. al. tries to explain why it is that some of us are so optimistic and could it be a bad thing? The article focuses on the events in which people do not take the necessary precaution they need to in order to protect themselves, that being the underestimation of future negative events, and why they were adamant about not changing (Sharot et. al.). So the way the experiment was conducted was Sharot et. al. took participants and told them to estimate the probability that an event would happen to them and then measured their brain activity. There was a total of eighty events that were "tested" all of which were adverse life events such as house hold accident, adultery, owing a large amount of debt, etc. They then combined a learning task with fMRI. This allowed Sharot et. al. to identify how blood oxygen level-dependent (BOLD) signals track estimation error in response to whether the information given lead to optimism or pessimism (Sharot et. al). To determine estimation error, they used the equation: estimation error = estimation - probability presented. They also used questionnaires to see if people changed their beliefs of an event based off of some kind of emotional arousal, how bad an event is, if they were familiar with the event, or if they have encountered such an event before.
Their results were that there was this region of the brain, right inferior frontal gyrus, in which showed a reduction for neural coding of undesirable error regarding the future for people who were optimistic. They also found that the reason there was this asymmetry in people changing their beliefs was due to a reduced expression of an error signal in the region implicated in processing undesirable error regarding the future (Sharot et. al.). The questionnaire that was administered showed that people didn't change their beliefs due to the severity of the event, if it is familiar or not, or if they have encountered it or not. The BOLD signal tracking showed that people with the largest optimistic update bias failed to show any undesirable error meaning the relationship between undesirable error and BOLD signaling was close to zero, where as people who did not show a selective updating in belief showed a strong relationship between undesirable error and BOLD signaling.
So it didn't matter whether how bad the future event was going to be, whether it was familiar or not, or if it has been encountered before but due a lack of not being able to code and process this undesirable error regarding the future. So really being optimistic or being optimistic even after information has disproved your belief isn't in your absolute control because if your brain fails to code and process it you can't really do much about it. Though you possibly could in theory but that raises questions for another time.

Sharot, Tali, Christoph W. Korn, and Raymond J. Dolan. "How Unrealistic Optimism Is Maintained in the Face of Reality." Nature Neuroscience. Nature America, Inc., 9 Oct. 2011. Web. 3 Dec. 2011. .
Posted by      Kou X. at 4:15 PM MST
displaying most recent comments (27 ommitted) | Comments (30)
  Nicole Zamora  says:
A lot of best ideas in your blog site thanks for offered Male Extra Reviews
Posted on Tue, 3 Sep 2019 6:33 PM MDT by Nicole Z.
  robert frcrocke  says:
I am continually amazed by the amount of information available on this subject. What you presented was well researched and well worded in order to get your stand on this across to all your readers. cracker barrel employee website
Posted on Thu, 19 Sep 2019 4:03 AM MDT by robert f.
  robert frcrocke  says:
hi was just seeing if you minded a comment. i like your website and the thme you picked is super. I will be back. security services in Nottingham
Posted on Fri, 20 Sep 2019 2:13 AM MDT by robert f.

Why Keep A Promise?


It is interesting to see the importance humans place on a promise. A promise is not visible or tangible yet it still seems to have a strong, compulsory quality to it. Why is that? The truth of the matter is humans have the exceptional capacity to establish social norms and create understood cooperation among each other that is not seen elsewhere in the animal kingdom. Before society's infrastructure of rules and laws existed, promises were still made as a way to ensure trust, teamwork and partnership. Furthermore and perhaps the most intriguing aspect of a promise is that it is a verbal, nonbinding agreement. Yet despite the lack of concrete liability we still make promises every day.

Some research looking into the systems of the brain involved in nonbinding agreements has been done but there are still more questions than answers regarding of this topic. Using promises as a premise for research opens a unique door because promises can either be kept or broken. They can be made for many reasons but there are two justifications for keeping a promise. The first is to ensure future trust and cooperation and is referred to as an instrumental reason. The second rational is because it is the right thing to do and is called the intrinsic reason. The study in this paper focuses on the latter of these two explanations.

Each trial of the experiment had two subjects, a trustee and an investor. The trustee's brain activity was measured. First the trustee promises the investor to always, mostly, sometimes, or never keep their promise. In this study to be trustworthy means sharing the money made equally. The investor could choose to invest or not and then the trustee could choose to keep or break their promise to share the money. The trustee could choose both the strength of their promise and whether or not to keep their promise. These freedoms of choice led to two main groups of trustee subjects: both groups almost unanimously promised to "always" keep their promise but when it came to keeping the promise the subjects split into either the group who honored their promise or who was dishonest.

This study was the first to create a design looking at three different processes that play a role in promises. The first stage is the promise stage where the promise is made, then there is what is called the anticipation stage while they wait for the commitment of the investor, and finally the decision stage where the promise is either kept or broken. Researchers could differentiate subjects who will keep their promise and who will break it by brain activity during the promise stage, when the deceitful act is already planned.

This study found that all stages of the paradigm revealed different, highly specific activation patterns in the brain. The promise stage is where the dishonest act may be already planned but not yet implemented and researchers hypothesize if the subject already plans to break a promise, this misleading gesture will induce an emotional conflict. This emotional clash shows activity in parts of brain involved in conflict and negative emotional process such as the anterior cingulated cortex or amygdala. The anticipation stage showed parallels in brain activity to personality traits such as depression and neuroticism, both of which are associated with negative expectations of the future. When the subject had to decide to keep or break the promise, breaking the promise showed similar brain activity to the emotional process of telling a lie and the guilt that that involves. This study showed plausible evidence tying nonbinding agreements to emotional and logical processes of the brain. This evidence is critical in explaining why humans value and venerate the simple idea of a promise.



Baumgartner, Thomas, Urs Fischbacher, Anja Feierabend, Kai Lutz, and Ernsty Fehr. "Broken Promises." Neuron 64.5 (2009): 756+. Science Direct. Elsevier Inc, 10 Dec. 2009. Web. 5 Dec. 2011. .
Posted by      Bethany B. at 10:48 AM MST
  Sarah Bennet  says:
Amazing blog and very emotional. A promise is not a concrete thing but it has feelings and quality to bond two people with trust. Everyone should need to read this and learn the important message from this. dba writing help
Posted on Wed, 3 Jul 2019 3:34 AM MDT by Sarah B.

December 2, 2011

Resonance among corporeal bodies: it might just exist in humans


"Self-construal" refers to how individuals view and make meaning of the self; at least two subtypes have been identified. Interdependent self-construal is a view of the self that includes relationships with others, and independent self-construal is a view of the self that does not include others. An individual's adoptive cognitive processing style with regard to context sensitivity is thought to be affected by the priming of these two types of self-construal. Simply put, the way a person thinks is influenced by how sensitive they are to their immediate context; priming interdependent or independent self-construal affects an individual's contextual sensitivity and by extension how an individual consequently thinks.


We affect how we think.


Okay, so that's not something new. The interesting thing is the notion that context sensitivity affects motor resonance among corporeal bodies. Yes, I'm talking about the human body and yes, we exhibit resonance. Apparently.


If you're having a hard time swallowing that idea for the first time (or if you're like me and find it intriguing in a nerdy way), perhaps a better way of thinking about it is a sort of 'subconscious chatter' of an individual's behavior emanating out from their body and, depending on how responsive we are to these continuously sent little packets of information, we subconsciously "resonate" the chatter in our own bodies in a social setting. It seems to me that resonance is another way of looking at the nonconscious mind and its effects on our behavior in a way we wouldn't normally think about.


A recent article published in The Journal of Neuroscience presents the case that motor resonance occurs between corresponding muscles in two individuals (at least in a passive observation activity conducted in the study). Ten participants (five male, five female; age range 18-39 years) were subjected to focal transcranial magnetic stimulation (TMS) of contralateral motor cortex while watching a video superimposed by an interdependent self-construal prime word, independent self-construal prime word, or no prime word. Focal contralateral motor cortex TMS elicited motor-evoked potentials (MEPs, amplitudes adjusted to ~1 mV at baseline fixation-cross control condition) measured from the abductor pollicis brevis (APB) muscle [the muscle of your palm attached to your thumb] of the participant's right hand. The 'motor resonance' part of the study was the passive observation of the video that showed a model contracting the APB muscle to squeeze a rubber ball between the index finger and thumb. Interdependent priming-elicited MEPs with a greater amplitude than the unprimed action showed greater motor resonance (presumably due to increased context sensitivity), and independent priming-elicited MEPs with a smaller amplitude than the unprimed action showed less resonance (presumably due to decreased context sensitivity).


They found that observation of the videos regardless of the priming condition facilitated MEPs of greater amplitude compared with the baseline fixation-cross condition (no-priming and interdependent priming condition MEP increases > independent priming condition). Little surprise there; watching a video rather engages more thought than watching fixed crosshairs. Interdependent self-construal priming facilitated motor cortical outputs beyond the unprimed-induced facilitation, and independent self-construal priming relatively suppressed unprimed-induced facilitation. Interdependent self-construal priming effects motor resonance; independent self-construal somewhat depresses motor resonance.


That's pretty interesting. So how does that tie to the whole corporeal resonance-subconscious body-to-body chatter thing?


The underlying idea is behavioral mimicry in social settings; 'contextual motor resonance sensitivity' mediates nonconscious mimicry in social settings, presumably involving the mirror neuron system (appropriately named). We resonate with other individuals on some level depending on our sensitivity to those around us. This implies that the reason why we imitate or mimic other individuals' behaviors and actions is not necessarily because we might under the influence of something and more sociable (disinhibited) from how we normally act or but rather being brought to a more resonance-receptive state/less resonance-unreceptive state; how we are brought to a more receptive state is through priming (by ourselves, others, quotes, environment, etc.). Conversely, priming also takes us farther from resonance reception/stronger resonance resistance. This article concludes that the study therefore supports the idea that motor resonant systems in the human brain mediate behavioral mimicry.


A little more on the mirror system. Complications with the mirror neuron system whether deficits or other abnormalities may play a role in disorders of excessive or reduced social influence, such as individuals with autism spectrum disorders, compulsive imitation, or psycho-pathic personality traits. Novel therapeutic interventions based on the findings of this study may benefit such patients greatly, and may even benefit us as well. Inducing interdependent self-construal could potentially make learning by observation more efficient.


Do you think resonance is the reason why we feel smarter when certain people stand next to us (or is that a bit too far of a stretch...)?



Link to the article: http://www.jneurosci.org/content/31/41/14531.full
Edited by      Patricia W. at 10:09 PM MST
  peter pen  says:
It is the best inform here i am playing the generate unlimited imvu credits online card game here more the online players play this game free.
Posted on Sat, 27 Apr 2019 4:17 AM MDT by peter p.

October 23, 2011

In the eye of the beholder


Optic illusions are fascinating. Sparking curiosity, intrigue and doubt in minds gazing at the impossibilities spawned by them. Most people have been exposed to a variation of the famous "which object is bigger" illusion. If you don't know what I'm talking about, there are two objects of equal size physically, surrounded by various contextual components. These various components give the viewer a false sense of subjectivity in which one object appears larger than the other, even though both objects are identical. It turns out neuroscientists want to better understand the cause behind these false perceptions and even predict human subjectivity in object size.

Your brain contains a primary visual cortex, let's call this thing V1. The size and surface area of V1 has a large range of variability from person to person. Scientists have correlated the surface area of V1 to the subjectivity in object size. Experimentation took place during September 2010 with 30 subjects with the hypothesize correlating V1 surface area and conscious perception differences via FMRI technology. Subjects viewed a "Ebbinghaus" illusion as well as a "Ponzo" illusion. Both are forms of physically identical objects appearing different sizes due to contextual differences surrounding the objects. The Ebbinghaus illusion appears larger due to different size circles surrounding the center circle. While the Ponzo illusion appears larger due to the 3-D context surrounding the images. The resulting data showed a strong and negative correlation between V1 surface area and subjective object size. Meaning: The less V1 surface area, the bigger the difference between the identical objects perceived by subjects. It should be noted that the Ebbinghaus illusion yielded better data for relation than the Ponzo illusion. "The ability to judge fine visual differences in physical stimuli (Vernier acuity) is correlated with the degree of cortical magnification in primary visual cortex".

The article also addressed V1 surface area and brain size do not have a direct relationship. Meaning a bigger brain doesn't constitute greater V1 surface area. Therefore having a larger brain doesn't mean a person is better at correctly determining visual stimuli. V1 actually tended to be smaller in larger brains.

Consider the possibilities of predicting human behavior, opinions and subjectivities by knowing who is more susceptible to illusions and visual stimuli based on brain structure. Knowing exactly how well people can perform certain tasks depending on their brain structure may be far off in the future but it's roots seem to have a firm plantation in the field of research.

Most people like to believe they are in total control of their thoughts, subjectivities and opinions. Yet in this experiment, it showed that people having less surface area of the V1, perceptions of object size were distorted. Your perspective and opinions may not be as genuine as you original believed them to be. Rather just by products of the human brain analyzing stimuli. As neuroscience continues to unravel the mysteries of the human mind ideas such as free will, consciousness and perception may need to be redefined.

(All information was taken from http://www.nature.com/neuro/journal/v14/n1/full/nn.2706.html)
Posted by      Dylan R. at 11:46 PM MDT
  David watson  says:
Bwills Cruise Holidays exist as a pro travel firm giving astonishing cruising and occasion visits in targets you have dependably dream of Holidays Cruise In Australia our ruler social occasion and persistent staff oversee everything from voyage game plans, convenience, airfare, and so forth.
Posted on Thu, 1 Aug 2019 6:43 AM MDT by David w.

Technology: Virtue or Vice to Our Brains?


It is undeniable that our daily lives are inundated with technology. Our society and this world work hand in hand with technology on a close, almost dependent level. It is only in the last few decades that we have become so co oriented with technology, and it is becoming a more pressing issue than ever that we question the effects of this change. As humans, who we are is shaped by our experiences, and knowing and acknowledging this fact means we have to question both the pros and cons of such a new and close relationship with technology. When looking at this relationship it is not a question of whether or not humans are being affected by technology but how technology is affecting us.

Technology includes a multitude of different things and cannot be considered one single entity. Because it is so multidimensional it is not necessarily a good or a bad thing; a greater breakdown is necessary to determine potentially harmful technology from proven positive facets of technology. It is verified that technology as a whole has the ability to manipulate mood and arousal. It has also been proven that attention, and vision and motor skills can be enhanced while using technology. These improvements are highly dependent based on the type of technology being used and whether or not there is active or passive interaction.

Television has been around for more than sixty years but it's relevance to everyday lives and learning has never been so great. There are learning benefits to technology but three reoccurring traits have surfaced in accordance with being wired. Studies have shown that people are more likely to be violent, exhibit addictive behavior, and get distracted easier. Once again the context of the technology must be taken in to consideration. Influences of technology are starting at earlier and earlier ages these days. In children the television show Telletubbies, research showed a decrease in language proficiency in children who watched this show. However, there was a language proficiency increase seen in children who watched Dora the Explorer.

These numerous concerns and detrimental findings in research also have a flip side. New research shows indications that playing video games is associated with a number of improvements in attention, cognition, vision, and motor control. Playing video games heightens ability to pinpoint small details in chaotic scenes. Playing video games and improving these skills has shown to help people in careers such as pilots or surgeons.
Part of making technology more beneficial than detrimental is learning how to use it and how to allow it to challenge and improve our brains as opposed to letting it become a route to mindlessness. We are seeing that the attractive features of video games such as emotional context, arousing experiences, and richly structured scenarios are what boost our intellectual brain and educational technology tends to exploit the repetitive nature of practice makes perfect. Making moves to shift educational technology toward the more interactive nature of technology could only improve our relationship with technology. It is difficult to study the ways that technology affects the human brain but considering the growing reliability and interaction humans have with it, research in this field is both necessary and critical to society.

Full article can be found at http://www.sciencedirect.com/science/article/pii/S0896627310006781
Posted by      Bethany B. at 9:41 PM MDT
  Joseph Crawford  says:
The post explores technology: virtue or vice to our brains. The article mentions that it is confirmed that technology as a whole has the capability to influence mood and arousal. It has also been verified that concentration, and vision and motor skills can be improved while using technology.

Thanks,
https://essayschief.com
Posted on Thu, 2 May 2019 5:29 AM MDT by Joseph C.

True or False: Emotions and Electrons Are Alike (Answer: true)


Remember that one time your girlfriend or boyfriend got ketchup on their nose while eating French fries and you thought it was hilarious, but immediately afterwards you felt guilty because they glared at you and growled for a napkin?

There is a word for that: ambivalence. The word ambivalence means that you feel two contradictory emotions (hilarity and guilty) simultaneously. Look a little more closely at the word ambivalence and you can probably guess what electrons and emotions have in common: valences. Emotional valences, like valence electrons, are shown outwardly on a persons face and they either attract (positive valence) or repel (negative valence) the person at which they are directed.

Many studies, since the advent of the fMRI, have examined the underlying circuitry involved in the expression and perception of emotion, especially negative valence emotions such as anger, sadness, and fear. The paper I analyzed is no exception to this rule: researchers from Kings College London, University College London, and the University of Zürich worked together to a) ascertain the circuitry that underlies the processing of emotionally negative facial expressions, and b) determine whether or not the amygdala is involved in the conscious processing of emotive faces. Basically, they wanted to know if our first response to facial expressions is to think or react.

In the study, a pool of 40 subjects (selected based on a range of nonspecific qualities) were shown a set of 60 faces and a corresponding number of fixation crosses (an image of a white screen on which a + is superimposed), while in an fMRI. Each of the 60 faces displayed either a neutral expression or a negative expression (anger, fear, or sadness) and the subjects used a clicker to indicate whether the face did or did not show an emotion. For each face, the response time and accuracy was recorded and was used in concert with the data provided by the fMRI images. In addition to the tests performed using the fMRI, a battery of statistical tests corrected for noise and anatomical dissimilarities among participants.

The findings are significant: the amygdala is not the only cranial structure that modulates facial processing. To be more specific, their results show that while the amygdala is involved in the processing of facial affect(Dima et al 1) there are also pathways to and from the fusiform gyrus, the inferior occipital gyrus, and the ventrolateral prefrontal cortex, which do not involve the amygdala. Most notably, anger was mediated by the inferior occipital gyrus and ventrolateral prefrontal cortex, not the amygdala.

What does all of that mean?

Basically, our brains have evolved for cognition for so long that we now respond to physical or emotional danger (anger in this case) in a cognitive fashion. We think before we react to a potentially harmful event.

Now think back for a second to your girlfriend or boyfriend with ketchup all over their nose. If this research holds, you will not immediately react and give them the napkin; you will, in fact, think about the potential harm that could come to you if you do not (minimal: they probably will not punch you), and the potential benefits you will reap if you do not (photographic evidence of the event). As far as I am concerned this decision is easy: memory is leaky; emotions are transient; but a picture lasts a lifetime.

What would you do?

Source: https://cuvpn.colorado.edu/content/31/40/,DanaInfo=www.jneurosci.org+14378.full.pdf+html?sid=20ba56d1-84f2-4fdb-b108-83aed6437270
Edited by      Christina U. at 2:03 PM MDT

October 22, 2011

Meditation: New Discoveries of Old Traditions


It isn't often in science that old methods of treatment are re-centered from their otherwise un-scientific past, to present as one of the more progressively favored treatments in modern society. However, it seems as though the old practice of meditation is working to accomplish just that. Chronic pain sufferers have endlessly struggled to find methods of treatment that they are not resistant to, or that their pain does not overcome at some point. Perhaps in favor of a reduction of cost and a more "natural" method of healing, meditation was further studied--and these studies are proving most beneficial. Research has shown that by practicing a state of "mindfulness", one can achieve decreased overall pain, as well as pain intensity.

Such mindful "interventions" have aided our understanding of pain disorders (both acute and chronic). With extensive training of one's mind (meditation), it is found that one's cortical regions that are associated with pain are thickened, perhaps enhancing that persons perception of their pain. This results in changes in their normal evaluation and perception of pain. These effects of mental training can result in a more beneficial method of neuroplasticity.

But how exactly does one measure pain? Surely we do not expose trial studies of non-pain sufferers to painful stimulus in order to further science! Why of course not--in fact, what is generally used in pain studies is not in fact 'pain' at all. Experiments with temperature extremes (hot and cold) are used to test the participant's perception, durability, and sensation of a 'painful' stimulus. In a particular experiment adhering to the purpose at hand, they tested the unpleasantness of the stimulus (hot water) before and after a series of meditative exercises. However, rather than test the person's personal opinion of the pain, they tested the person's brain's perception of the pain through measurements of Cerebral Spinal Fluid, through a method called ASL. ASL is an "MRI pulse sequence that provides a measure of CBF using water as a flow tracer". Using ASL, they found OFC (orbitofrontal cortex) activation, and deactivation of the thalamus. During painful stimulus, usually the opposite occurs--a decrease in OFC and an increase in thalamus activation are seen. This study concluded that short term mediation can decrease the affect pain, and the experience that goes along with it.

It is important to take this discussion with a grain of salt. Even though these studies did work, I believe it is essential to define the term "meditation". Perhaps all it encompasses is distraction from temporary pain, having your mind focused on other things, thus rendering it less activated in the pain 'areas' of the brain. This type of treatment would not necessarily work for those who are suffering chronic pain. However, I feel more work in the field of long term mindful trainings may prove beneficial to act as a sole treatment or a combination treatment to pain disorders.

Another limitation to this experiment is the role of an adequate control group. I felt that they had no data to argue their finding against. The perception of the irritating stimulus may have simply decreased because they had already experience it once, and could therefore were more comfortable experiencing it again. It is crucial to create a group that simply received both tests without any meditation, to see what the conclusion of diminished pain was really measuring. Nevertheless, to whatever degree this breakthrough is effective, one conclusion is for sure--studying mediation and perception of pain enables us to further understand just how our brain handles painful or noxious stimulus. Hopefully we are able to use such methods of research (such as ASL) in order to provide helpful, more affordable treatment for the individuals suffering from pain disorders.

Source: http://www.jneurosci.org/content/31/36/12705.full?sid=93623df9-45b5-4cb8-9698-061f6707ba10
Posted by      Amber S. at 5:15 PM MDT
  Christina Uhlir  says:
Amber,

This is lovely! My mom had postherpetic neuralgia and japanese accupuncture actually worked wonders for her.
Posted on Sun, 23 Oct 2011 7:46 PM MDT by Christina U.

October 20, 2011

Can we trust Neuroscientists?


October 19, 2011

Typically, neuroscientists, or among all scientists, fail to provide full disclosure of the project to a participant in order to obtain valid knowledge on the phenomena being investigated. Although this methodology is widely used by many scientists, it however proves to be an ethically controversial topic. The idea of deception in human experimentation becomes unethical as the informed consent required by the individual is not completely transparent of the research, thus lacks a degree of respect for the persons utilized in the experiment. Hence, how can the vast majority of psychology and neuroscience projects be approved by ethic committees if deception is a common methodological theme? Are participants rights triumphed by the knowledge gained by the experimentation? To what extent are unethical methods permitted by ethic committees and what makes one idea allowed and another not? These are questions that we should be asking ourselves, knowing that science should not be independent of ethical and moral values.

It comes to my attention that a capacious amount of published articles using deception as a method to obtain valid knowledge by the participant is not specifically stated so in the journal article. Without blatantly stating that this form of research utilized deception, a person that is unaware of ethical issues within research may not realize that some participants were not given proper information.

Understandably, deception in research is a methodology that is not going to leave science any time soon. Therefore, it is necessary to make it prevalent to the public that this occurs and for readers of the research articles to be fully aware of the use of deception. I believe that it is pertinent that if a researcher decides to integrate deception into the procedure, it should be clearly stated within the Materials and Methods section of the journal article. Overall, I believe that the nature of the research should be explained to the participates after the experimentation, such that it will soften the overarching ethical dilemma. This may ultimately limit the participant pool, but it does give a degree of respect from the researcher to the participants that is truly deserved.

Personally, I believe that it is our right and our duty, as readers and future neuroscientists, to take this matter seriously. We should not allow researchers to infringe upon participants rights to be tested when there is a lacking of transparency of the nature of the research. We should encourage our colleagues and higher authorities to demand that experimental deception included in the research should be explicitly stated within published articles and individuals be debriefed of the entirety of the project. Adding these boundaries to published articles will not only provide a more ethically sound publication, but will promote respect for science among readers that are not familiar with the field when full disclosure of the experimentation is available to the public eye.

Original article: http://www.jneurosci.org/content/28/19/4841.full.pdf
Posted by      Sarah H. at 12:16 AM MDT
  Christina Uhlir  says:
Sarah,

Objectively speaking, would you or wouldn't you trust a neuroscientist?
Posted on Sun, 23 Oct 2011 2:23 PM MDT by Christina U.
  Sarah Ha  says:
Personally, I wouldn't want to be a participant in an experiment if I'm not given full disclosure of the purpose of the experiment. Plus, it makes me more skeptical when I read journal articles of overall results if the published article is fully disclosing their methodology. How can I repeat their experiment if I don't know exactly what they did?
Posted on Tue, 29 Nov 2011 3:56 PM MST by Sarah H.




 Copyright © 2007-2016 Don Cooper, Ph.D.. All rights reserved.
  Feed — Subscribe: RSS