Create an Account CourseStreet Log in  Connect with Facebook
Home Blog
 

NRSC 2100 Blog

A GROUP WEBLOG FOR NRSC 2100 SUMMER NRSC 2100

Showing entries tagged attention.  Show all entries

December 5, 2011

Your Brain on Nirvana


Any student has experienced that moment in class when he cannot for the life of him recall what the professor has just said seconds before. Whether it was because he was distracted watching a gnat fly around the light overhead or because his furiously working writing hand wasn't taking notes quite quickly enough to keep up with the lecture, there are always a few intervals which we miss in our daily lives, because our brains lack adequate attentional resources - unless you happen to be an expert in Buddhist meditation, that is. Among its various purported benefits, which include changes in metabolism and blood pressure, meditation also has been shown to result in altered brain structure and function. In other words, meditation induces neuroplasticity. In much the same way that one can obtain expert proficiency in a foreign language, mental training via meditation can result in increased information processing capacity in the brain.

Meditation is used by an increasing percentage of people to promote relaxation and a heightened sense of well-being. In a study published by the IEEE Signal Processing Society, researchers showed that meditation also leads to increased levels of concentration and reduced attention blink, as well as resulting in enhanced cortical area, in a manner similar to other forms of skill acquisition. The study made the distinction between two types of meditation - Focused Attention (FA) meditation and Open Monitoring (OM) meditation. Utilizing fMRI to measure hemodynamic changes in various areas of the brain, FA meditation was shown to be correlated with activation of the dorsolateral prefrontal cortex; the visual cortex; and the superior frontal sulcus, supplementary motor area and intraparietal sulcus. These areas are associated with our ability for monitoring, engaging attention and attentional orienting, respectively. When an individual meditates regularly and becomes an "expert", the cortical area of these regions in the brain increases. This would seem to indicate that attention is a trainable skill.

In addition to being able to pay focused, long-term attention to a chosen object, meditation experts were also shown in the study to undergo less activation in their amygdalas in response to emotional stimuli. This would seem to imply that emotional behaviors are not compatible with a stable state of advanced level concentration, and also that our emotional state can be consciously controlled, to some extent.

The implications of attention as a trainable skill appear to be numerous. For example, let us consider Attention Deficit Disorder (ADD). It would seem that individuals who suffer from a seeming lack of ability to focus for prolonged periods of time might benefit from practicing meditative techniques, where the mind is calm and focused for prolonged periods of time. In addition, the general population might also benefit from the ability to reduce "neural noise" and thus pick up more information from the environment more quickly, rather than becoming overwhelmed by the constant data input. For students, their ability to focus in class and process more information more efficiently could have considerable impact on their learning. Many aspects of the impact of meditation on the human brain are as yet still unknown, but it would appear that it has profound effects on attention learning through the creation of novel synaptic connections, in addition to its role in promoting cultivation of general mental and emotional health.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2944261/
Posted by      Clarinda H. at 6:36 PM MST
  Sarah hamilton  says:
The blazes singed, and the smoke gagged, and the Basques were caught. One of their biggest, a heavy metal forger, still had his sledge and figured out how to thump free a pivot - constraining a little space open through which the Basques could get away from their firey fate.
http://www.getessaydone.com/
Posted on Thu, 11 Oct 2018 4:00 AM MDT by Sarah h.

Pay Attention! The Relationship Between Memory and Attention


Memory and attention are not always seen as being related, however Johnson and Chun's article, the connections between the two of these processes are looked at in detail. This article would be considered a meta-analysis of several studies on the topic of memory and the different attention states themselves. Both perceptual and reflective attention was studied and reported, showing interesting results about how the brain categorizes and retrieves memories in relation to these types of attention. The majority of the studies that were focused on within the article had been arranged and performed by the authors of the article, giving an interesting perspective.

Neuroimaging was used to determine the areas of the brain most activated by certain stimuli. Functional magnetic resonance imaging (fMRI) was the technique most referred to in this article; fMRI's are used to visualize the neural activity based on the hemodynamic response of glucose release within the brain. With this technique, it was seen that similar areas of the brain are activated when a stimulus is first observed (what the article refers to as perception) and when the same stimulus is being recalled (referred to as reflection). For instance, a cue for a visual memory will cause a higher activity level in the visual cortex in the same way that the visual cortex was originally stimulated when the cue was first observed. Similar responses are seen in both short term and long term memory recollection.

It has also been observed that certain activities that relate to either perceptual attention, like repetition attenuation, or reflective attention, like reactivating and retrieving, activate areas that are generally similar to the areas activated during the experience of remembering. Beyond the areas originally involved, there are other areas involved in the processes of memory and attention. These areas include frontal and parietal areas such as the hippocampus, the anterior cingulate cortex, and other various areas of the frontal and parietal lobes of the brain. The article demonstrates that refreshing perceptual events, using both types of memory also shows similarity in both activity levels and in the sections that are activated. The studies have shown that there can be severe interference if a participant is told to recall multiple objects or situations that were encoded with similar attention states and that are located in similar areas.

This article could have improved if it had looked at multiple sources of stimulus rather than just visual stimulants, as there could be vastly different results from memories of different senses. Furthermore, reviewing their own experimental studies could give rise to a bias in the analysis of the studies. However, this article did bring up some important ideas.

The conclusions drawn from this article could lead to many other topics of research that could help in the understanding of how the ways of memory, attention, and how they are able to work together. Further knowledge of these relationships could provide information on how to improve educational systems and could promote more effective ways of learning.




Chun, M. M., Johnson, M. K. (2011). Memory: Enduring traces of perceptual and reflective attention. Neuron, 72(4), 520-535. Retrieved from http://download.cell.com/neuron/pdf/PIIS0896627311009615.pdf?intermediate=true
Posted by      Breanna S. at 4:06 PM MST
  Christina Uhlir  says:
Nice article :P
Posted on Mon, 5 Dec 2011 7:55 PM MST by Christina U.

December 4, 2011

This Proves We're Obsessed with Shiny Things


How does a predator within 4 seconds of scanning an environment map it, memorize it, and sort out all unnecessary information from the info needed to be able to survive? Many theories have to do with the difference between top down and bottom up visual processing. Top down processing refers to the slower, executive cognition behind vision while bottom up is fast and not consciously driven and heavily influenced by environmental cues. Those environmental cues have been studied as to their effect and also as to what exactly grants them salience, or the property that allows the stimulus to stand out against its backdrop. While many studies have already been done studying the effect of salience on such things as saccade movements in the eyes to fixation periods to mapping brain location, little to no experiments have been done trying to illuminate salience and its relationship to memory.
A simple task was devised consisting of having 12 participants focus on a scene for a brief period of time. The view is then removed from the participants and they are subjected to a wait period. Once that time is completed the participants are asked to recall the position of several figures in the scene to test their memory. They varied the difficulty of the scenes and the salience of the objects to see if there was any correlation between the two, and as it turns out there was indeed. The salience of the object was directly correlated with the performance of the participants meaning they were more successful at recalling the objects exhibiting greater degrees salience than they were recalling inconsequential items. Furthermore, they tested this with varying degrees of difficulty and found that the more difficult the recollection task was, the greater the positive effect of salience had on the performance of the participants. While one could argue that they perhaps were drawn to those items and they simply focused on those items more than the others thus increasing the chances of memorization, they mapped and timed their eye movements to measure any fixation times on the items and found no difference in the fixation times between the salient objects and the non-salient objects meaning that they spent the same amount of time memorizing each object.
To summarize the findings, they showed that human�??s ability to recall objects within a certain space is positively dependent upon the salience of the object, and it is not due to any differences in memorization periods. A positive correlation between the increasing difficulty of the task and the positive effect of salience on memorization suggests that perhaps the brain may use salience to identify objects of value and omit objects deemed unimportant when the brain is forced to compromise.
They did make sure to mention another study with conflicting results. The study opted for a test involving people to assess whether a certain object was in a scene. They authors asserted that the difference in the findings could be attributed to the inherent difference in the tests, as one dealt with object identification and another with object location and spatial memory. They conclude that salience of an object and the effect it has on memory needs to be studied on a brain system to brain system basis, analyzing which systems are involved and what that would then imply.
This study provides more insight into the evolution of sight and how vision has been used and fine tuned throughout evolution. Recognition of the salience of an object is conserved throughout most species and clearly plays a pivotal role in the utility of vision as a whole. The ability to quickly asses an environment for all the information essential for survival is something that if without many animals would fall prey much more often due to lack of attention. This often taken-for-granted aspect of our vision that we are mostly unaware of is something that most certainly needs to be studied further and fully understood.
Original Article: http://www.jneurosci.org/content/29/25/8016.full
Posted by      Christopher R. at 10:37 PM MST

Reasons You Should (not) Text and Read


Tap tap tap tap tap Bam Bam Bam *moaning* TAP TAP TAP TAP BAM BAM BA-BAM BAM BAM!

Take a page out of the Dr. Chun and Johnson book: if your roommate is having wild and kinky sex just next door, find someplace else to write your Civil War research paper. Keep in mind, this advice does extend beyond sex as a distraction and a research paper as a task. In the November 17, 2011 issue of Neuron the review Memory: Enduring Traces of Perceptual and Reflective Attention made several assertions about the aggrandizing body of literature concerned with the networks involved in and interactions between attention and memory. Research concerned with the dynamic interplay of memory and attention, currently, is sparse; until very recently, neuroscience research has focused either on attention or memory. Lately, however, researchers have found that their results about attention or memory phenomena cannot be explained without more information about how they are conjoined. The purpose of this review was to assess advances that have been made, possible applications of the results, and hypotheses to be tested in future studies.

Looking back at the poor sap listening to his roommate get it on not five feet away, while he is attempting to concentrate on how Union soldiers mistreated Confederate women and children, made me wonder if he can pay any attention to the task he is supposed to at the moment (his paper). Thankfully, I do not have to conduct a research experiment myself to see if he will succeed: this question was already answered in A general mechanism for perceptual decision-making in the human brain. The answer is simple: if the task you are concentrating on is easily accomplished then the amount of attention you need to devote to it is low (low load), and, unfortunately, distractions will impact your efforts much more than if the task is not easily accomplished. If the task is difficult, the cognitive load will be high and distractions are not as likely to detract from your concentration. I think the paper he is writing has a high cognitive load, but I also am inclined to think that the amount of sensory input he is getting, from task-irrelevant sources, is not low on the cognitive load scale and, therefore, his reflective attention on the paper will suffer.

Beyond informing us how to respond to demanding situations, this review reflects on various findings that have been made, and steps to be taken, in the exploration of the pathways implicated in memory and attention. A major discovery that was made recently, (July 2011) by a conglomeration of researchers from the Netherlands, is that, not only do attention and memory interact, memories of images, (reflective representations specifically) when retrieved, activate the same pathways as though the image was seen twice. The implications are clear: that picture in your head of your long lost lover perfectly replicates what he or she looks like in real life, right? Not quite, all that Oliver et al. discovered is that the same pathways are activated in the perception and recall of a dot or shape, which cannot be extrapolated any further.

However, that is not to say that none of the studies in this review came to similar conclusions; a few even arrived at conclusions, and observed results, that are salient to the human condition. A few of the more scintillating results include, but are not limited to, the fact that when we are not distracted the amount of and detail in which we remember information is extraordinary (implications for people with ADD/ADHD); the harder a task actually is, the more likely we are to focus on it than on distracting stimuli (studying habits); and, the ability of older adults to enhance memory (learn new things), while simultaneously being unable to distinguish false memories from true memories, and remember salient information from the past (memory loss due to aging).

The study of memory and attention interactions is new and, because of the information already gleaned from studies focused solely on attention or memory, certain questions can already be answered about their interactions. I, like the Civil War historian listening to his obnoxious roommate slam his way to a TBI, am not satisfied to simply sit around and listen (in my case about studies that have been performed, in his case sex). I am interested to learn more about attention-memory interactions and, someday, contribute to this fascinating field of study.

Now, who is ready for a pop quiz on the interactions of memory and attention?

Source: http://www.sciencedirect.com/science/article/pii/S0896627311009615
Posted by      Christina U. at 3:00 PM MST
  aidan mary  says:
I really want to take your test, what should I do?
starjack io
Posted on Thu, 15 Aug 2019 9:49 PM MDT by aidan m.




 Copyright © 2007-2016 Don Cooper, Ph.D.. All rights reserved.
  Feed — Subscribe: RSS